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All cost estimates are characterized by some uncer-
"j tainty. A device helpful in communicating this uncertain-

ty to the decision maker is a subjective probability
distribution of the system cost. A technique--termed the
Subjective Probability Estimation Technique (SPET)--is de-
scribed and a computer program is presented to facilitate
its use. This technique permits the analyst to represent
his notions about cost uncertainty with the beta or other
statistical distributions.
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INTRODUCTION

The cost analyst is faced with many uncertainties as
he attempts to estimate the costs associated with a new,
undeveloped system. He may wonder:

(1) Will the physical characteristics of the system re-
main unchanged as the development process proceeds?

(2) Will there be any unforeseen problems in the develop-
ment process?

(3) Will the economic state of the firms or industry re-
sponsible for system development and production con-

- tinue to change as forecasted?

(4) Is the quality of the historical cost data suffi-
ciently high to inspire confidence in the estimates
made with it?

(5) Have the cost-estimating relationships been properly
specified?

To the extent the analyst is unable to obtain complete an-
swers to these and similar questions, his cost estimates
will be enshro'ied wii-1' uncertainty ~~~~psi
ble to obtain definitive answers to all these questions,
his cost estimates will always be characterized by some
uncertainty.

The analyst can treat this uncertainty in one of sev-
eral ways. He can choose to ignore it and simply report
to the decision maker the estimate which represents the
tmost likely" or "best" estimate of cost, as in the case
of this hypothetical guided missile system:

FIGURE 1

"BEST" UNIT COST ESTIMATE OF A HYPOTHETICAL
GUIDED MISSILE SYSTEM

COST
$10OK

This approach, however, belies the existence of a range of
possible costs; when the system is finally acquired, any
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one of the innumerable costs within this range may have
been realized. Such an oversimplification may mislead the
decision maker by causing him to place excessive confi-
dence in the best cost estimate. An illustration of this
potential pitfall is provided in the following example:

Suppose two alternative systems that do the same
task are being compared. Suppose, too, that on bal-
ance, the differences in effectiveness, performance,

growth potential, maintainability and similar consid-
erations between the two systems are small, so that
the choice is primarily one of cost. Suppose one
system is estimated to cost $1.25 million and the
other $1.50 million. Without an indication of the
possible high and low values, the $1.25 million
alternative would be the logical choice. But the
choice becomes more difficult if, as shown in the
accompanying tabulation, the $1.25 million cost is
qualified with an estimate of a possible high value
of $2.00 million, whereas for the other alternative
the limits are estimated to be tighter, and the pos-
sible high value is only $1.60 million. The case for

Cost Estimate
System (Millions of Dollars)

.-. . Most -
Lowest Likely Highest

First Alternative 1.00 1.25 2.00
Second Alternative 1.40 1.50 1.60

the alternative with the "most likely" cost of $1.25
million is now more dubious, because its uncertainty
spread is greater, extending on the high end to
greater costs than the other alternative.3/

The analyst can avoid the problem associated with a
single best cost estimate by supplying the decision maker
with estimates of the lowest and highest possible costs in
addition to the best estimates:

N. SutherLnd, Fundamentata oj Cost Unee ttinty AnaLy-
AiA (McLcan, VA: Rehazeah AnaZg6iz Coap., RAC-CR-4
117IJ, pp 3-4.
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4 - FIGURE 2.

- - -"--"BEST" AND RANOE ESTIMATE OF THE UNIT COST
OF A HYPOTHETICAL GUIDED MISSILE SYSTEM

COST
$~ 6K $1l'OK-. . .. . .. 0. . .

This approach has merit in that it reflects the range of
the cost uncertainty. However, it gives little informa-
tion about the nature of the uncertainty, e.g., whether
all the values in the range are almost equally likely to
occur, or whether the values closer to the best estimate
are much more likely to occur than those near the extremi-
ties. "Such knowledge could be valuable to the decision
maker.

One device helpful in-communicating knowledge of both
the range and nature of the uncertainty is the probability
distribution of the total system cost. To illustrate,
consider a probability distribution of the cost of the hy-
pothetical guided missile system:

FIGURE 3

PROBABILITY DISTRIBUTION OF THE UNIT COST
OF A HYPOTHETICAL GUIDED MISSILE SYSTEM

K- - 0K - - 1- OK---

COST
$6_0K --- $B8OK lK-- $140K 18OKf

Note that the range of, say, a 95 percent confidence in-
terval [$80K, $140K] is significantly smaller than the
full range [$60K, $180K]. The knowledge that the analyst
is 95 percent confident that the cost will occur in the
much smalle: interval [$80K, $140K] will permit the deci-
sion maker to act with a more precise idea of the probable
cost of the system than he could otherwise (providing, of
course, that he trusts the analyst's judgement).

I-- "A popular source for the probability distribution of
the cost of a weapon system is the prediction interval ob-
tained from cost-estimating relationships (CERs) developed
by-regression analysis. Unfortunately, this method of
probability analysis has a serious limitation: there is
no provision for the analyst to incorporate into the anal-
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ysis his notions about the stochastic behavior of the sys-
tem cost. For example, most cost analysts have a good
idea of the lower bound on the cost, but are less certain
about the upper bound. This suggests a probability dis-
tribution that is positively skewed:

FIGURE 4

POSITIVELY SKEWED PROBABILITY DISTRIBUTION

O $O _K COST$60K ;10A0K $240K

The user of the prediction interval obtained from classi-
cal regression analysis, however, has to accept a symmet-
ric probability distribution -- the normal probability
distribution -- often against his better judgement:

FIGURE 5

SYMMETRIC PROBABILITY DISTRIBUTION

_COST
$60K $180K $140K

In addition to this limitation, the paucity (and variabil-
ity) of data used in regression analysis of weapon system
costs often results in prediction intervals with lower
bounds which include an extensive region of negative
costs:

FIGURE 6

PREDICTION INTERVAL ABOUT A
HYPOTHETICAL REGRESSION OF COST ON WEIGHT

COST

0 WEIGHT

NEGATIVE COSTS
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4 ':The fact that this model predicts the impossible -- nega-
tive costs -- again reveals the above-stated limitation of-
this approach to probability analysis. What the analyst
needs is a technique that will permit him to retain the
"most-likely" estimate of system cost and incorporate his
a priori beliefs into the prediction interval.

This paper describes such a technique. The authors
have entitled it the Subjective Probability Estimation
Technique (SPET). This technique is based on the same

principles used by Program Evaluation Review Technique
(PERT) a xalysts years ago to treat time-estimating uncer-
tainty.A/ As its name suggests, SPET accounts for the
fact that the probability distribution of the cost of a
new system is by necessity subjective since repeated ob-
servations on the cost of the system, from which an objec-
tive probability distribution could be inferred, cannot be
made (there is only one observation on the cost of a new
system -- the final acquisition cost of the system -- and
when this observation is made the need for an estimate
terminates). The analyst implements SPET in three steps
by:

(1) decomposing the system under examination into
several subsystems whose costs are additive;

(2) selecting the subjective probability distribu-
tion that best represents his knowledge and judgement
about the cost of a subsystem;

(3) combining the subjective probability distribu-
tion of each subsystem cost into a subjective probability
distribution of total system cost.

The remainder of this paper discusses the theoretical and

practical aspects of these three steps.

SYSTEM DECOMPOSITION

When a cost analyst estimates the cost of a complex
system he generally breaks the system down into several

4/ F. S. HilLtiZe and G. J. LiZebeman, Introduction to Op-
exation6 Re.6eatch (San Ftancizco, CA: Hotden-Vay,
Inc. 1967), pp. 227 229-232. See ato K. R. MaaCAimmon
and C. A. Ryauec, An Anayticat Study o fthe PERT AA-

Aumion (Santa Moniea, CA: the RANV Corp. RM-3408-

PT 1962)



subsystems and estimates the cost of each subsystem. The
breakdown of the system is usually determined by the ana-
lyst's knowledge of the system and the form of his data
base. Using the technique described in this paper, the
analyst will also develop a subjective probability distri-
bution describing his uncertainty as to the cost of these
subsystems. Of course, if some subsystem cost is known
precisely, no uncertainty is involved and this cost is
treated as a constant.

SELECTING THE SUBJECTIVE PROBABILITY DISTRIBUTION

A probability distribution can be selected to repre-
sent any imaginable combination of factual knowledge and
subjective notions an analyst might have about the cost of
a subsystem. For example, suppose the analyst has a good
idea of what the lowest and highest possible costs for a
subsystem could be, but he feels that all costs within
that range are equally likely. His subjective probability
distribution for the cost of this subsystem can be repre-
sented quite adequately with the uniform probability den-
sity function:

FIGURE 7

UNIFORM PROBABILITY DENSITY FUNCTION

COST
Lowest Highest

Suppose that instead of feeling that all costs within
the rapge are equally likely the analyst feels that a par-
ticular cost within the range is more likely to be real-
ized than any other. He could represent the cost with a
triangular d.istribution:

FIGURE 8

TRIANGULAR PROBABILITY DISTRIBUTION

_COST
Lowest Most Likely Highest
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or the beta distribution:

FIGURE 9

BETA PROBABILITY DISTRIBUTION

__ COST

Lowest Most 'Likely Highest

or any other distribution with a single maximum value.

The beta distribution is one of the most popular
among cost analysts for representing subjective probabil-
ity distributions. The popularity of the beta is due to
its several appealing characteristics. One of these char-
acteristics is that its range may be restricted to posi-
tive values; costs similarly are positive. Another is
that the beta has a finite, rather than infinite range; ic
is reasonable to suppose that the cost is bounded by fi-
nite upper and lower bounds. Finally, the beta distribu-
tion can be expressed in an infinite variety of skewed and
symmetric forms which provide the analyst considerable
choice when specifying the particular shape of the di... tr-i-
oution. 5/

Because of the popularity of the beta distribution,
the discussion in the remainder of this section will cen-
ter on it. In the next section, however, a computer pro-
gram is described that permits the analyst to use any im-
aginable subjective probability distribution to represent
subsystem cost.

5/ Another& commonty used ditributior. i4 the WeZibutL.
Mozt o6 the appeating propertiez o6 the beta are alto
6ound in the Weibull di6tZibution. Fox examptZu o6
the u6e o6 the Weibut1 in treating uncertainty in co~t
analy.6i .6ee V. F. Schaefer, et. at., A Monte Caro
Simatation Approach to Co.t-Unertainty Analtysi,
.Meean, VA: Rehearah Analysiz Corp.; RAC-TP-349,
1969) and W. H. Sathertand, A Method 4o,% Combining
Aymretri Three-Vaae Predietionz o6 Time o% Cozt

TMCLean, VA: R.6eaac Anay.y6.. Corp.; RAC-P-65,
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The usual expression for the beta probability density
function (pdf) is:Y~

f(x) =Cxa(l -x)b; 0 < x < 1; a,b > 0;[1

where C = r(a + b + 2)/[r(a + 1)r(b + 1)]

= thie inverse of the complete beta function

and _r(t) =f cozt-le-dz, t > 0.
0

This version of the beta pdf will be called the normalized
beta pdf, since the range of x is the unit interval.

A simple linear transformation, x* = L + (H - L)x,
where L and H are the lowest and highest values of x*, re-
spectively, extends the range of x in equation [1] to any
finite interval, yielding a generalized beta pdf:

g (x*) = [C/ (H - L) +b+l] (x* a L~(H - x*) b [21

where Ci as -dcfrincd in oquiati ~L]adL<x j

a,b > G.,

The four parameters of the generalized beta pdf are a, b,
L, and H.2,! Therefore, a unique pdf is defined for every
four-tuple (a,b,L,H). The values the analyst assigns to
these parameters can be obtained through certain estima-
tion procedures.

The analyst may estimate L and H directly from his
-and other expert knowledge of the subsystem's technology,
contractor.(builder), industry, etc. After analyzing

6/ 11. J. LaAuon, Ii'tt.oduction to Phtobabitity Theot4 and
Stati 6t-Leat In etence (New Yo_E.'- John Witey and SonA,
Inc. 969 p. 305; B. W. Lindg7ten, State LZcat Theo-
'A (kew Y0tod: The MaeMittian Co., 1968), p. 373.

I/ Noti that L and Hf .6e'e onty to 6pecijy the o'uigin and
k~ange o6 x*, whe,%eaA a and b dete,%mine the Ahape o6
the pd6 06 x*.



these data, he chooses L and H so that the cost of theIsubsystem could never be less than L or greater than H.
Estimates of the parameters a and b, however, cannot

be obtained in a direct manner. One way to estimate them
is to obtain two functionally independent equations in a
and b and then solve them for these parameters. In Appen-
dix A, two such equations are proposed and a computer pro-
gram facilitating their solution is documented. Potential
users of this method for estimating a and b are cautioned;
some combinations of the analyst-supplied inputs result in
distributions that cannot be represented by a beta random
variable. This problem can be avoided by using another
pair of equations. Consider the mode M(x*) and the vari-
ance V(x*) of the generalized beta distribution:8!

M(x*) (all + bL)/(a + b), L < M(x*) = H [3]

V(x*) = [(a + l)/(b + 1)(H - L) 2 ]/[a + b + 2)2

(a + b + 3)], 0 < V(x*) : (H - L)2/12 [4)

Using cost-estimating relationships or other methods,
the analyst can estimate the mode or most likely value of
the subsystem cost.!/ By evaluating much of the informa-
tion he has about the subsystem cost he can estimate its

9/ See Footnote 2 in Appendix A 6o& the detiation od
th6e foLmultae.

The tange o6 the mode i4 obtained d'tom it4 deZinition.
The tange oj the vatiance iz due, in part, to the 6act
that the Zower bound on the uakiance o6 any ditAibu-
tNon iz zero, and, in part, to the act that the beta
d.i.t'ibution convergez to the uniform az paamete46 a
and b app4oach ze.o. The upper bound on the vatiance
0j the generalized beta distribution i6, thzeeoxe,
the variance o6 the (genetatized) uniform diZtAibu-
tZion, namety

V(x*) = (H - L)2/2 [5]

9/ UndeJ. mo~t eZicum~tance6 the moat-tZizety value iA the
anatyt'& point e.6timate od the zuby.6tem cozt.

U.. 9
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variance.L01  Having obtained estimates for these two sta-
tistics, he can solve equations [3] and [4] simultaneously
to determine unique values (estimates) for a and b.

The principal difficulty with the technique proposed
is in the estimation of the variance. It is difficult for
the analyst to interpret his beliefs concerning the uncer-
tainty surrounding a point estimate in terms of the beta
variance. As an aid in this process, the analyst may con-
sider a related variable, which is termed an uncertainty

* coefficient in this paper. The uncertainty coefficient
represented with the letter "U" is a normed linear measure
of the analyst's uncertainty. If there is no uncertainty
in the estimate, U = 0; if there is total uncertainty on
the whole range (i.e., all values are equally likely), U =
1. In*most instances, the analyst can assign a reasonable
value to U. The variance of x* can then be determined
from the relationship:

V(x*) = [(H - L)U]2/12, 0 < U < 1. [6]

It is difficult for the analyst to visualize the dis-
tribution he has chosen from his estimates of the parame-
ters. However, since the shape of the beta distribution
is determined by two of the parameters (a and b) which are
In turn determined by the values of the mode and the un-
certainty coefficient, it is possible to get a reasonable

10/ It has been proposed that the anatyst assume that the
range o6 the cost variabte is equal to six 6tandard
deviations, yielding V(x*) = [(H - L)/6] 2. The basis
6o& this assumption is that "most" o6 the probability
asociated with diztribution6 such a" the normal diA-
t/ibution is contained in the interval ± 3 Atandard
deviations 6rom the mean. The authoAs o6 this paper
do not 6ind this to be a ve/y t&ong motivation. The
total range o6 the uni6o4m pd6 is contained in an in-
te~va. o6 ± 1.75 standard deviations and this distri-
bution is a limiting 6orm o6 the beta dist4ibution.
Further, the higni6icance o6 the behauiox o6 indin-
ite, symmetxic distributions such as the normal pdj
in de4iving propettieA od the (gene4ally) finite,
a~ymmet&ic beta distribution i6 questionab le. It
seems mote logical to allow the analyst to input his
knowledge o6 the unceAtainty via the uncetainty eo-
e6ficient. However, i6 the u.ea prefe4 this devie
he should input the value U 0.577 when using pxo-
9Aam SPET.
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idea of the distributional form from a set of normalized
graphs of beta pdfs with different modes and uncertainty

4. coefficients. Such a set appears in Appendix B.

Appendix B contains ten groups of graphs of normal-
ized beta pdfs. Each group contains graphs of three pdfs
with the same mode but distinct uncertainty coefficients.
The modal values vary from set to set, beginning with .05
and increasing by .05 until .50 when reading the abscissa
from left to right, or beginning with .95 and decreasing
by .05 until .50 when reading from right to left. To use
Appendix B, the analyst computes the estimated normalized
mode (N) from his estimates of L, H, and M with the rela-
tionship

N (M - L)/(H - L) [71

and then selects the group of pdfs whose normalized mode
is closest to this computed N. From the three graphs in
this subset the analyst can see how the pdf varies with
the uncertainty coefficient and get a reasonable idea of
the shape of the distribution he has chosen. Alternative-
ly, he may look at the set before choosing the uncertainty
coefficient and use the information he gains to help him
select the value for U.

Example

Assume an analyst is studying the cost of some sub-
system "'S". By analogy with other systems, or by some
other technique, he determines that the cost of S will be
something greater than $7,000 but less than $12,000. Fu-
ther, utilizing a CER, or by some other technique, he es-
timates its most likely value at $10,500. He calculates
the normalized mode "N" from the equation:

M - L 10,500 - 7,000
N H - L 12,500 - 7,000 = .64

The set of graphs corresponding to this system is found
between pages B-19 and B-21. These graphs are read from
right to left.

After the analyst has developed the distributions of
each subsystem he faces the problem of determining the
distribution of their sum (the total cost of the system).

.1A



I~ COMBINING SUBJECTIVE PROBABILITY DISTRIBUTIONS

Of the several techniques that have been employed by
cost analysts to combine statistical distributions repre-

senting their subjective probability distributions, two of
the more popular are derivation of momentsll/ and Monte
Carlo simulation.1 2/ Each of these techniques has its ad-
vantages: the former can be done with tables and a desk
calculator, whereas the latter requires access to an elec-
tronic computer. The latter, however, is much faster and
easier to use. For this reason Monte Carlo simulation is
the technique employed in this research. Appendix C docu-
ments Program SPET, a computer program for adding indepen-
dent statistical distributions by means of Monte Carlo
simulation (SPET also performs other calculations dis-
cussed in the next section).

Program SPET has been used successfully on an inter-
active time-sharing computer system. Basically the user
enters the parameters of the statistical distributions se-
lected by the analyst and the program generates frequency
distributions and summary statistics of the total system
cost. Details and an example of the inputs, outputs, and
operation of the program can be found in Appendix C.

THE INDEPENDENCE ASSUMPTION: A PROBLEM

When the analyst decomposes the system he is costing
into several subsystems, it is very unlikely that the
costs of the various subsystems are always statistically
independent of one another. For example, the cost of the
propulsion system of a guided missile is probably corre-
lated with the cost of its payload. The correlation would
be positive if an increase in payload cost was due to an
increase in payload size which, in turn, would require a
more powerful and hence more costly propulsion system. On
the other hand, the correlation would be negative if an
increase in payload cost was due to a reduction in payload

11/ See S. Sobet, A Computerized Technique to Exptezz Un-
c etainty in Advanced Sgtem Co~t Etimate" (Bedord,
RA: The Mitre Corp., TM-3728, 1963), and W. H. Suth-
/Ltand, A Method 6oA Combining Asymmetuic Th4ee-Vatue
Predictions oA Tkme ox 06 C(c Lean, VA: RueaC
Xnay.64 CoAp., RAC-P-65, 1972).

12/ P. F. Vienemann, . t, and V. F. Schoe6eA, O.
cit.
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j size brought about by miniaturization which, in turn,
i 6uld require a less powerful and hence less costly pro-

* pulsion system. It is impossible to determine a priori
whether the correlation between the costs of any two sub-
systems is positive or negative, but the experience of the
authors suggests that in the majority of cases it will be
positive.

If an analyst assumes that the statistical distribu-
tions (random variables) representing subsystem costs are
independent when in fact they are positively correlated,
he will underestimate the variance of their sum. To see
this, consider the expression for the sum (S) of the vari-
ance of n random variables (Xi):

n n-in
V(S) = ZV(Xi ) + 2.Z Z Cov(Xi , Xj) [8]

i=l i=l j=i+l

The assumption of independence implies that Cov(Xi, XI) =
0 for all i/j, which in turn implies that the expression

n-l n
2 E E Cov(Xi,X j ) = 0.i1l ji+l

e Xi are dPenzdent, -hiz term could be positive, neg-
ative, or zero. If it is positive, its deletion from [8]
byassuming independence results in an understatement of
V(S). An understatement of V(S) could be a serious prob-
lem because it results in a confidence interval about the
mean of the total system cost distribution that is smaller
than it should be. This might cause the decision maker to
posit unwarranted confidence in the estimate.

Assuming the random variables representing subsystem
costs are positively correlated, the magnitude of the un-
derestimate of V(S) is directly related to the number of
variables in the sum. To illustrate this fact, consider
the following example:

There are two positively correlated random variables,
X1 and X2 . Then

V(S) = V(X I ) + V(X 2 ) + 2Cov(X1,X 2 ) [9)

. * Now assume X1  Z1 + Z2 . Then

I 13
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v(s) = v(Z1 ) + V(Z 2 ) + v(X 2 ) + 2 Cov(Zl 1 z 2 ) +

2 CoV(Zl,X 2) + 2 Cov(Z 2 ,X2) -

V(Z1 ) + V(Z2) + V(X2 ) + 2 Cov(XIX 2 ) +

- -2 CoV(ZIZ 2) 110]

Assuming independence in the case of two variables
results in the deletion of 2 Cov(Xl,X2 ) from V(S).- However, in the case of three variables the assump-

- tion of independence results in the deletion of not
only 2 Cov(XlX 2 ) but 2 Cov(Z 1,X2 ) as well. Clearly,
if the covariances are positive, V(S) is understated
more in the case of three variables than in the case
of two.

Therefore in the case where the random variables repre-
senting subsystem costs are positively correlated not only
is the variance of the total system cost underestimated,
but the magnitude of the underestimate is directly related
to the number of variables making up the sum.

The obvious solution to this problem is to incorpo-
rate into computer Program SPET provisions for the consid-
eration of probable correlation among the variables and
then proceed to estimate the nature of the correlation.
Although the former idea presents no problem, the latter
appears to be a most difficult task.- It is not clear at
this point how to systematically estimate the correlation
among the variables representing subsystem costs. Hope-
fully a credible technique for doing such will become ap-
parent to someone.

Program SPET has been designed to provide some in-
sight into the significance of the independence assumption
in two ways. First, by using the same random number in
sampling from all the subsystem distributions, a distribu-
tion of total cost which the printout titles "Dependent
Beta" is dcL'ived. The technique imposes a functional re-
lationship between all the variables. Note that this
functional relationship is not an arbitrary relationship
but is imposed by the forms of the subsystem pdfs devel-
oped by the analyst. Specifically, if Fi(X i ) is the cumu-
lative distribution function of the ith subsystem then:

n n
EX i = 1 + E i-I[FI (x I  [11]

imn 2

* 14
4kli=
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where Fi- I is the functional inverse of Fi . The functions
Fi and Fi-i are much too complex to derive the specific
form of the relationship imposed but the technique does
impose a very real positive correlation between the varia-

.bles.

As a second means of examining uncertainty without
imposing the independence assumption, SPET prints the sta-
tistics for a uniform distribution of total cost on the
interval between the sum of the minimum costs of the sub-
systems and the sum of the maximum cost of the subsystems.
This is meant to serve as a "worst case." SPET also
prints the total cost distribution assuming each of the
subsystem's costs is uniformly and independently distrib-
uted.

4

SUMMARY

Several conceptual points have been discussed, among
them:

(1) the nature of uncertainty in cost analysis;

(2) the value of treating uncertainty explicity in cost
analysis;

(3) a nroblem inherent in using the classical linear re-
gression model as a basis for statements on cost un-
certainty;

(4) the subjective nature of cost uncertainty;

(5) the properties of the beta distribution and how they
can be used to facilitate cost uncertainty analysis;
and

(6) the dependence of subsystem costs and its impact on
statements about uncertainty.

The basic practical contribution of this paper is a
computer program for generating statements on cost uncer-
tainty that permits the analyst to input any imaginable
probability distribution to represent a subsystem cost.

" 15

., . , ."



I APPENDIX A

ESTIM4ATION OF PARAMETERS a AND b:

COMPUTER PROGRAM PARAM

-1-77
W AA



-(7-

Introduction
One way an analyst can estimate parameters a and b of

the generalized beta probability density function (pdf)!

is to simultaneously solve two functionally independent
equations in a and b. Consider the mode -- the "most
likely" value -- of the generalized beta pdf:

M (x*) = (all + bL)/(a + b) [Al]

Using a cost-estimating relationship, or other methods,
the analyst can estimate the mode (M) of the subsystem
cost he wants to represent with a beta pdf. Substitution
of M into equation [Al], along with L and H, yields one
equation in a and b:

M= (all + bL)/(a + b) [A7]

Another equation in a and b can be obtained from an
estimate of the probability (P) that the cost of the sub-

I/ See equation [2] on page 8.

2/ This expression can be obtained by solving d[gfx*)]/
dx* = 0 So , Ux" w.jvo 9(x*) i6 given by ..... 12].
However, it is eazier to obtaain expression6 okr the
mode as welt as the mean, E(x*), and the variance,
V(x*), o6 the generatized beta pd6 by means o6 simple
atgebraic operation4 on the expre.ssion6 6o,% these sta-
tistics derived from the mote 6amiliar. normatized beta
pd6. The mode, mean, and vatiance o6 the normalized
beta pdj axe:

M(x) = a/(a + b) [A2]

E(x) = (a + 1)/(a + b + 2) [A3]

V!=- [(a + i)b + 1)]/[(a + b + 2)2 (a + b + 3)] [A4]

Note that M(x) a/(a + b) M[(x* - L)/(H L)][MLx*) - /LIH - L); holving 6oAl Mix*) yieLdz equation
[Al]. Proceeding zimitarly 6o E(x*) and V(x*) yizetd

EWI - (al +* bL + H + f)/(a + b + 2) [AS]

. V(x*) [(a + )(b + 1)(H - L)2 ]/[(a + b + 2)2 (a + b +

3)3 [A61

A-1-. -$ } ] -A A -I"
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system will lie within a subinterval of its range [L, H].
For convenience, this subinterval is taken as the interval
from L to the midpoint between L and M, i.e., [(L + M)/2].
Then an equation in a and b results from the relationship

L+M

P [C/(H - L) a+b+l] $-- (x* - L)a (H - x*)b dx* [A8]
L

where C, x, a, and b are defined in equation [2].

Equations [A7] and [A8] comprise two functionally in-
dependent equations in a and b, and when solved simultane-
ously determine unique values (estimates) for a and b.

Program Description

Program PARAM is written in FORTRAN IV for use in
conjunction with a PDP-10 computer in an interactive time-
sharing mode. It is designed to solve equations [A7] and
[AS] for parameters a and b, given values for L, H, M, and
P. This is accomplished in the following sequence:

1 - The inputs L, H, and M are normalized. Denoting
the normalized counterparts of L, H: an" 4 by 1; h; and m,
respectively,

1=0
h= 1
m (M - L)/(H - L)

2 - A standard root-finding technique!/ is employed
in Subroutine Beta to find the \alues for a and b that
satisfy

m/2
P =C xa(l X)b dX [A9]n

where P is supplied by the user, m is determined from a
user supplied datum (M), and C, x, a, and b are as defined
in equation [2]. Note that [A9] is the normalized version
of [A8].

31 The 4oot-Sinding technique ia known aa the "daLte po-
Aition" method and iz d ond in moat textA on nume4Zcat
anatyhia.
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Subroutine Beta calls Function Subprogram Gamma to
compute values for I'(n). This is accomplished by use of
the relation

Y.r(n+l) = nl'(n) [A10]

and an interpolation procedure.

By repeated application o~f [Alb], r(n) for any n>O
can be expressed as the product

(n 1) )(n - 2) ... r(n*) [All)

where 15 n* 5' 2. Since r(n) is well-behaved in the range
1 5 n* :S 2, the values of r(n*) can be approximated using
a "table look-up" interpolation procedure. Function Sub-
prograni Gamnma uses such an interpolation device in con-
junction with relation [All] to evaluate r(n).

3- The four-tuple (a,b,L,H) is printed as output.

User Instructions

The following example demonstrates the use of Program
PARAM. Note that the user supplied portions of the exam-
p~eareunder 14--A.

ti hAr(A.A

J~J~I4('~, I~,.14

ALt'i-A 1S 1.07
i3LfA I z 1n

IS 4Ca.JJ

%:p Ual rzo 2

CAiI

I A-3
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Program Listing

A=BB
JVd2 220 PP=(:.
oodJ3 NMtl I D=0.

0[/,d4 HLI'J hN.30d l 5 R lI L': ( 1 '

i 7C60 60 FO|;, A} ( IL- ,28ii3rA PARAY.ErERS OUT OF RAN3E)

003c0 LND
o)o9o C
00 C, 00 FUNC"ION GAIM,',IA(GP)
o0s; 11 REAL G((22)
MYS20 -MATA G/I.,.9735,.95135,.93304,.91817,

00930 4 .9S064,.89747,.89115,.88725,.88565,
,0094t0 .88623, . E3:87 , .b9352,. 900 12 ,. 9864,

M( ,50 + . 1906,.93138,.94561,.96177,.97983, I.,)./
,J0960 II=16
00970 JJ=16

00(,9.a SUIA.
h 10;2,0 IFCUP-57.4) 10, 10,20
,0l'*0 1 1 0I ( . 9 -9 20, 30.30
.6 1 '0 2 0 2 0 VIl '":( I I ,4
,1,330 40 FORMAT( IIi- ,28IGA.,,AA PARAM-TER OUT OF RANGE)
,61 /4 0 Ekk 0 = r'FER 41.

S1054 .RETURIN
.16060 30 IF(GP-2.) 5k.,50,60
J 1, 70 63 SUM=SUM* CGp- I.)
316,680 GP=GP-I.
.1090 --GO 10 300}1100 50 -1It(GP- I. ) 70, 31,80
31.110 70 SUM=SU;*/GP
01120 GP=GPiI.
01!30 80 I=(GP- I. )/.05+1.
J.1140 X]=l-I
J.1153 OPL=I .+X*. 05
0.1160 GAM.IF'4=G ( (G ( 141 )-G 1) (GP-GPL)/.05
, 117 GAA.,., ; A- 1. : 0 SU.
01180 RETURNaI I E0IND

A-4
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00410 IF(GP-C7.4) 43,40,50

0014 2J 40 ClI =GAR-MA W P)

0430 UP=A+I.
J4 4 C2 =GA..;.A (GP)

00(450 C3=CI/C2
00460 GP=i3 F I.
00¢4 7/0 C4 =3A . A (GP)
J04d. C=C3/C4
00490e 70 X.,=X .,V' +2.
jvb00 E) 80 1=2,3
1;05 l-0 FT(1) =f (I.)**A*( I. - (I) ) **3
Z0520 TI~lI)=T(I ) 4P

00530 d3 CONTI NU E
00540 T1(2) =1(4)
00550 XSUM=FT(I)+4.*FT(2)+FT(3)
00560 Fl( I )=FT.(3)
005 70 XI Nr G=XI , I"rEG+XSUMl
0D80 IF(MX%,-IN'TEG) 70,90,90
005S, 90 AA= P-C*bP/3.*X I NT EG
"UL6 k"O IF (ABS( AA)-.01, 0,I) I ,I ,II,

110. ' ,,- ' ' ,kA S ) 120, 30,i37006202 13 IF(AA) 140,142),150

0960 143 AA1=AA
,00640 G I =B

0005.0 GO TO 160
00660 153 AA2=AA
006 0 GP2=B
0o680 160 GO To (170,180),JJI
00690 120 JJI=2
507 e O ro 130
00710 170
00 7 20 f =6*,2.

00730 GO TO 1 90
0740 163 B=( AA2*G I- AA *GP2 )(AA2- AA I)
00750 190 MSV=AA

760 Go) ro 30
002-116 100 IF(PP-NMIDD) 200,2e0,210

d07d 204 GO TO 220
.60793 210 "3B =B

UB=A

7 1I

.. ...1I.. _____ J-



10 FOMAT(Ifi-, 20.1ESTM%,ATz,:s OF L,H.M,P/)

02000 ~ CALL bLTA(L,H,&--,P,A,B)

00 1VO 0 FOIMA( I-,9HLPH 15F8.2/10H- BETA IS ,F8.2/
001 10,~ S F8.2/10H HIGH IS ,F8.2)

00160SUBRUrINEB;-fA(L,H,M,PIA,3)
17 fe RLAL L,k, INTL13,NM ODE,NI.ID, NMI DD. Fr(3) F(4)

00 1 dl.)=16
00 1 JJ=16
oj2 100 1 N' L 04

00e213 SLAHCH=20.
0220 ~ N IMC E=CM - L/(H - L
M-230 N.ViI U=N/.l.0C /2.

00J240 f(~Mr 10,10,20
00250 20 PP=P
-60260HMi rD=NM1,D

J0d 1NP0 D= I .i-NM ID
002 SO N.MO. 0E=I . - N.M O P
0030.6 10 SP =NMIi)INT EG
00:i I eAAS=--1I
'30.320JJI=I

0033J Wi=S LAk CH-A( I.-NMODE)
0034,) 3=0.

0(3S 5 13 3 A=8*3MO)DE/ CI . -NMOLE

h0370 XI.NfcGO.

003 SIDFT t I ) =3.
064 Vvs P=A.ii.2.
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APPENDIX C

COMPUTER PROGRAM SPET



Descrip'-Zn:1 Program SPET is written in FORTRAN IV for use in con-
junction with a Univac 1108 computer in an interactive
time-sharing mode. It is designed to approximate the fre-
quency distribution of the sum of up to fifty independent
beta or other random variables by means of Monte Carlo
simulation. This is accomplished in the following manner:

(1) The user specifies the beta variables by entering
the lowest (L), most likely (M), and highest (H) value as
well as the uncertainty coefficient (U) of each variable.
He specifies other variables by entering the lowest, most
likely, and highest values, as well as the mean, variance,
and cumulative density function (cdf) of each variable.
He enters only those values of the cdf F(x) corresponding
to x = L + i(H - L)/10, i = l,...,i0.

(2) For all beta variables the computer:

(a) Computes beta parameters a and b from M and U
by first converting U to V with equation [6] and then si-
multaneously solving equations [3] and [4].

(b) Computes the discrete cdf, F(x), for x =
i/10, i = 1,...,10, using Subroutine DQG32./

(3) Next the class intervals for the distribution of
the sum of the beta and other variables are computed.
Adding the L values and throughput (TPUT)-/ establishes
the lower limit of the range; adding the H values and TPUT
establishes the upper limit. The 3ange is then divided
into 15 intervals of equal width.,/

(4) Four frequency distributions of the sum are gen-
erated. The first distribution results from the assump-
tion that the distributions making up the sum are statis-

I/ DQG-32 uwea the 32 point Gauzzian quadqature method o
integtation. It iA taken 6rom Convotution o Inverse
Beta Viet4ibutionA by a Sameting Technique (BetheA da,
MD: Mathematkca, Inc. 1971).

2/ Throughput meanA con6tant, and i4 uuatty the coat o6
a 6ubayptem that i6 known with ce4tainty.

3/ The numbeA o6 intevalh can be vartied by a4&igning the
de6ired number to KK in tine 11 o6 the main program.

c-1
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tically independent. It is generated as follows:

? t (a) Obtain a random number lying between zero and
"A one from a uniform random number generator.4/

(b) Compare the generated number with the values
of the discrete cdf, F(x), for one of the variables and
note the interval [F(xi),F(xj)], xi < xj, into which it
falls.

(c) Find the x-value, xi < x < xj, corresponding
to the random number by means of linear interpolation

5

(d) Transform the x-value from its normalized
(0,1) value to its standard (L,H) value by means of the
transformation x* = L + (H - L)x. [Cl]

4/ An unsuccess6lu attempt was made to 6ind a machine-
independent random number generator 6ox inclion in
the program. There6ote, Program SPET requiAes the use
o6 a user-supptied generator. Make the appropriate
changes in tine 150 o6 the main pLogram to accommodate
the geneator (it may be necessary to atso change
tines 68-69, 155, 158, 162, 175, 178, 182, 262, and
21A- 32)

5/ Steps (b) and (c) can be illustrated 6ox a normalized
%andom variable x as 6ottowa:

F(x)

IT (1.0)
F(o.8)

F(O.6)

Enter random
number here I

F(0o.4) I
F(0.2) -

0.2 0.4 ).6 0.8 1.0

Read Corresponding
x-value here

C-2
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(e) Repeat steps (a) - (d) for every variable.

Ar (f) Compute the observation,

iwIN
X- TPUT + Zx!J i=l .

where N denotes the number of random varia-
bles.

(g) Find the class interval [see (3) above] in
which Xj occurs and register one occurrence in that inter-
val.

(h) Repeat steps (a) - (g) for j = 1,...,M obser-
vations, where M = number of desired observations. When
step (h) is terminated, one has a frequency distribution
of the sum of independent random variables.

(5) The second distribution of the sum is generated
in the same way as the first except for step (e), which
should now read, "Repeat steps (b) - (d) for every varia-
ble." This means that the same random number is used to
obtain an observation on each component of the sum rather
than a new number as done when constructing the first dis-
tribution. The procedure of using only cnc random., n-Ux-er
introduces a correlation among the component variables be-
cause when the value of one variable is known, it in turn
maps uniquely to the values of all other variables. This
correlation is positive because the cdfs are positive
monotonic functions.

(6) The third distribution is simply the uniform dis-
tribution over the range of the first distribution. Both
the second and third distributions serve as indicators of
how a violation of the independence assumption could af-
fect the distribution of the sum and the summary statis-
tics.

(7) The fourth distribution is the same as the first
distribution except the component variables are all uni-
form random variables. This distribution serves as an in-
dicator of the relative sensitivity of the distribution of
the sum to the degree of uncertainty in the component var-
iables.

(8) Along with the four frequency distributions just
described, the computer generates the mean, mode, standard
deviation, variance, 90% confidence interval about the

C-3
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mean, and the probability of exceeding the mean for each
of the distributions. In addition, the user can specify
any confidence interval about the mean and the probability
of exceeding any number within the range of the distribu-
tion and the computer will generate it for him.

User Instructions

The following example illustrates the use of Program SPET:

TI TL.C*tA I:PtS* j

W *W- L: 14. TA o)isr-41I*JTILX46

DATA FILEII) O TRMINAL42) INPUT
r 2

LO'ESTMOI:, It G.iEST.L 4RIAINtTY COFF
DATA
100.2%0.900..8
DATA
300. Y0390-. 2
DATA
200,4o00.t75,.5
DATA

Nkr.DE OF TiER DISTRItUTIONS

LOAES1. MOOEH1GCST. WEAN. VARI ANCE.D I SCRETE COF
DATA

TY,,OUG-Ipu r

35
NF. .'t OF1 OISERVAiIONS
2300
SEO RANDOM rlU'IER GENERATOR
87654321

**EXAMPL.E **

I N P Ul T S - --- - -

OBSERvATIONS 2000
SEED 57654321

BETA VOLE LOWiEST MODE HIGHEST V CCE 
,  

NODE ALPHA BETA MEAN VARIANCE

* 1000 250.0 900.0 .80 .19 .3 i.E 396. b 33006,0
2 500.0 550.0 590.0 .20 .56 39.6 31.16 3,9.9 27.0

3 200.0 400.0 675.0 .50 .42 3.7 5.1 406.9 4697.4
4 150.0 330.0 800.0 ."0 .28 3.6 9.4 3o&9.3 5614.6

46
OTHER V14LEA

T 50.0 75.0 100.0 75.0 206.3

THROU4PJT 35.0 35.0 35.0

835.0 2900.0 1612.5 4353.2

6",1000 .2000 ,3000 ,4000 ,5000 ,6000 ,?000 .000 6"000 1.0000

c-4
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INTERVAL RANGE INnEPCHOCNI OETA/OTHER OePt:NCNT IIETA/OTHR TOTAL ql0IORM 1I40.EOCNT LP1FOU

PO" COF POF COF POF COF POF COF

S 835.0 - 972.7 0. 0."" *.0110 : , 0 .066? .0607 .0010 .001a

2 9q72. - 1110.3 .0010 *Ofio .0545 .06 '. .00." .13.i3 .0025 .0035

.3 110.7 - 1248.0 .0240 .0250 .304n .1195 .0667 .2000 .0215 .0Th0
3 1248.0 - 3l.7 .1140 .1390 .1245 .2940 .0667 .2667 .035 .06b

S 13I'-? - 1523.3 .270 .31(fO .13!Vi .42b .06h7 .3333 .0805 .160

1523.3 - 166.1.0 .256O .6020 .1365 .5660 .00,? ."000 .1170 .2630
7 t6..0 - 1798.7 .3945 .7Q65 .1370 .6fl30 .06i7 .46,,7 .157h .423"

1 1708.7 - 1936.3 .1240 .9205 .1115 .7945 06u7 .5333 .1615 .7520

9 1956.3 - P074.0 .060., .t0.05 .01i/h oqt*0 .06c? .60uO .1025 *730.
10 2071.0 - 2.'11.7 .0185 .0-0 .O.540 .9560 .06.7 .W.t .1070 .9310

11 2?11.7- 2349.3 Ofl 0 1.0'jC .035 .9,) .066.7 .73'3 .0115 .9731

12 23u9.3 2487.0 0. 1.00.066 .800 .035 .3725

13 24R7.0 - 2624.7 0. 1.0).) .Gc'.% .9' 1 .06.7 .8667 .0210 *9;35

34 2624.7 - 2762.3 0. 1.0000 .0015 1.nou0 *06' 7 *93Z3 .0060 .93'

15 2762.3 - 290P.0 0. 1.Ofno 0. 1o00 0 .0667 1.0000 .005 1.0,6.

s.oAN#* .1615.5 13621.1 1867.5 1869.2

1*MODE* 3 592.2 1592.2 186. 5

*tVAR1AtNCE%* 44843.7 121148.0 355352.1 103015.0
.iSTO 0EV1AT1ONe* 211.8 358.5 596.1 32 1"0

*'90t (CrtFIOE.ICE 1IA VAL*- 1307.2. 1124.8. 93 8.3u ]Z37.
/ ' .'

% 26.7 ?MA. '23.'

AN4OTHER CON~F)OENCE IN4TERVAL?
95 8036.6p 1258.3-

**951 CONF10ENCE INTERVAL* 1277.0o 1071.2.
2218.5 2900.0. 2845.14 2524.7

ANOTIsR CO1FIOENCE INTERVAL?

0

PROS £CEEcr SOME VALUE?

oU EXCED 1450.0 .75 . o .89

PROS CECECn SOE VALUE?

MIJONIT0AL OBSERVATIOIISP

MtOTER SEE.D?

STOP S
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(1) The user enters a title up to 60 characters long.

(2) If he is using beta distributions to represent
some or all of his component distributions, the user en-

Sters the number of distributions to be so represented and

proceeds to step (a) below. However, if he is not using
the beta, he enters the number "0" and proceeds to step
(3).

(a) The user specifies whether he will enter the
four-tuples L, M, H, U defining each beta variable direct-
ly from the terminal or from a data file stored in the
computer by entering the number "l" for data file input or
the number "2" for terminal input.

(b) If he chooses the terminal input, his next
step is to enter one four-tuple L, M, H, U for each beta
variable. If he chooses the data file input, he merely
enters the name of the data file.

(3) If he is using distributions other than the beta
to represent some or all of his component distributions,
the user enters the number of distributions to be so rep-
resented, followed by the L, M, H, mean, variance, and the
discrete cdf (see page C-i) of the distributions he has
chosen. If he is not using other distributions, he enters
the nwuber "0".

(4) If there is a throughput (constant), the user en-
ters it now.

(5) He then enters the number of observations (sample
size) he desires, followed by a seed for the random number
generator.

(6) The computer prints the user's inputs, followed 3
by the output.

(7) The computer then queries the user if he desires
another. confidence interval. The user responds with the
confidence interval he desires, or types the number "0" if
he desires none.

(8) The computer asks the user if he desires the
probability that some value within the range of the dis-
tribution will be exceeded. The user responds with that
number, or the number "0" if he desires none.

(9) The computer inquires to see if the user desires
additional observations. The user responds with the num-

C-6'U'.



ber of additional observations he desires (the number "0"
if none). If he desires additional observations, the com-
puter repeats steps (6) - (9).

. :.. " (10) The computer asks the user if he desires to use

another seed for the random number generator. The user
.esponds with the seed if he does, or with the number N0N
if he does not. If he enters another seed, the computer
repeats steps (6) - (10).

ii
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Program Listing

3 REAL TITLEt1?,VALNT1.,f nW15 )PP1I 5 pP2E15)oP3 1)OP.115I

7 INTEGER F;4:5).F2f151.F4fI5l

16 DAT F O R M A T//6t TI 'T E 1 '

11 7 FRMTI1h

15WRITE C11. 10
20 10 FORAT( //6 T2,ILPE) BT ISRBTOS
17 READ(JJ#) TITL

29 WRITE(If *10)
20. 10 FORM~AT(,H. 28HNUMBERF ETA O DITRIBUTION) CU
25 REAO(JJ.4) NINT

26 IF(IUJPUT.EO.21 GO TO 16
27 wP:TE117,13i
28 13A FORMAT(I2H,117HNAME OF DATA FILE)
29 READ(JJ.1 ) NAIEt4)
30 14 FORM'AT IA".)
31 CALL OBEYNIAME,.3
32 00 15 1=1 .Il
33 READ13.*) LfI).MODEf1) ,Hf1)mUf1)
3'. 15 CONTIJ'E

35 GTO !0
-- ~ Coi zl t *D.**V*J

37 wRITE(II.30)
38 '30 FOP.vATtH .37HLO.VEST,MO0EHIGHESTUtJCERTAINTY COEFF)

41 50 ORMAT H HA TAW

-~ "2 REAO(JJ.sl LCI .mOE(l) .8(1) Ull)
'.3 laO CONTINUE~
44' 60 CONT11J'.E
'.5 wRITECIeTO)1
046 70 FORYAT(IH .29HNUMBER OF OTHER DISTRIBUTIONS)
'.7 REA04JJ#e) N42
'.8 IF(N2.EQ.OP GO TO 78
'.9 Notc=N141
50 NTWO~#J14N2
51 W'.XTEMPI751
52 75 FORMAT(IH *Ia6HLOWEST.MODE.NIGHEST.MEANPVARIANCE.DISCRETE COFI
53 00 76 ltJOIrEv.NTwO
54 VRI TEI150)
55 REAOIJJ*.) LIJ).MOOE(I),NEi).MEANC1).VARI). VALINT(JeI)uJ=1.10)
56 7A1 .JNTI NUE
57 GO0T079
56 78 CONTINIUE
59 NTwO=Nl
60 79 WRTEII.#721
61 72 FORMAT(IM ,1OHTHROUGIPUT1
62 REAO(JJo*l TPUIT

6'. 77 FOAMAT(Ill @2.?HNUt4BER OF OASERVATIO4S)

65 READIJJ#*) M

67 80 FORMAT I I * 28HSEVD RANDOM NUMDER GENERATOR)
66 RCAOIJJool 1(50

69 KS02=KSO
7O IFPfNI.EQ.O) GO TO 105
71
72 % COMPUTE A AND 0
73 s
7'. 00 85 ImleN1
75i HMO-



77 V--(.2fi 67bo8#U(I),'.2.
78 8(I)=1.0

* 1 179 606 8
91 IGOTOR6 , T 8

3 IF4Z3.a
*94 7 COMPUT DICRT COFSP

95 3a

87 0091 J 1 N

103 %u00
104 % COMPTE DICRET CO

106 XULX.D

107 CALL OG32(XLPXU.Y.ALPHA-fIETA)
102 vAI(I ejl. CJ)

105 00 CO0 T=1.9

109 910 CONTINUE

112 1 COM~PUTE CLASS INTERVALS

120 105 CONTINUE

115 KLOZP
W(6 XH 1)HXHIGN

17 00 120 1=2.NKK

129 XHIGNEATHISTOGRAM

131 110 CONT1INUE
321 R0AGEXHGH-L

125 00 1212.K

127 12'0 CNIU

130 st~S10

135 SUMS02c.

140 SU14SO4=0.
1141 MSTAR=M4
142 00 1%i0 I=1.eKK
143 FIII)=0
344' F2(11=0
145 P411)20
346 150 CONTIfrJE
147 160 CONTINUE
140 00 360 K=I@MSTAq
149 00 1140 J-I#Nfwo
1.50 fANDZUDRNRTIKSj)

C-9

.' -I** " ---



2~ FIJ tT.1j18 To IQ%

06 SA2 1 zIT

161 6 TFRfO.EVL1T*L) GOTO01

16 200 CONTIIrJE

160 SMA2=.U24TT2
167 6 TuO 27"02TOL*

-I*163 2.0 TO:TA0=TAL24SMA2O,,.,R:,u))+(LL

169 J2=COS2..'+l.
170 IF(J2.EO.K"+1.) .J2=K'(
171 *F2fJ2,=FP(J2l,1.
172 TOTAL2=0.
173 19~5 00 2:15 1=1#10
174 M1=
175 IF(RAN.LE.vALtTI.J)) GO TO 227
176 225 COFITIriLE
177 2?7 IF(M.I.EU.1) Go TO 231
178 229 Tl(Ai)VL'TI---~/VL1TM,)VLN(--FI

180 SM.ALAZ.1*TIS
181 Go TO 233
182 231 SMALL I=.I.- RAr40/VAL~t.T(1,J)
183 233 TOA1TTL4YLI(()LJ)LJ

1 O0 SU' iSO1SU*A 1 4 T TL AL *.I

10 SUMASOI=SUlliSOL6,TOTALI*#2.

12 COST1~fTOiALl-XLO9)/RANGE

195 FI(J1)=FI.fjl,1.
*196 COST4=TOAL.-XLO.I)/RANGE

197 J'.=COSTUOK'+1.

198 FJ.E.l)1 UK

200 TOTAL 1=O.
201 TOTAL'.=0.
202 180 CONTINUE
203

*20. f, COM~PUTE STATISTICS
205 If
206 IC=90
207 10 235 11I.KK

209 P211)=FLOATfF2I,,)/
210 P4.t1 =FLAT(F. I) 1/M
211 235 CONTINUr
212 CALL STAT(SU'11, '.K(,P,WS4SeMAN.MiOOEIPVARISTD11
213 CALL CIfMEANI.IC.PI.KKW.11I0T'4eL1,UlI
21'. CALL C0F(P1..NEAf41,pu ,W.C1.PX1)
215 CALL STATfSU42.M-.K' -.p,WSUNS02.I#EAN2,MO0C2,VAR2.STO21
216 CALL C1IMEAN2I.P,pKKW.,!1flTi~eL2.U2I
217 CALL. COFlP2,'-!'AN2.K(..WvC2.PX2)
218 CALL STATgSt.1'.,.I'.~WS%lC1i4,MEAN'..M0OE4,VAA&.ST'.1
219 CALL CIgNEAI4uIC.P,&eK..w~IvTHL~,U'.I
220 CALL CO)FfP4,.lEAN4.KK.W@C'.,PX'.)
P21 WINI.EO.01 6O TO 252
222 00 250 I=lot~l

2?24 VAR(t I=( rAl I +1. 100311141. .(H(I )-Lill1*. 2)).fg I A(14t(1hI)2. 2.)* (Atll4Otla,3.))
P23 250 CONTINUEC

-c-b
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216 2W CONfIlNUE
227 msL#4 TPuT
228 VSI.P40.
229 DO 25', 1=1.NTWO

- .230 MStJM=M5*UtN.MEAN(I I
231 VSUN:VSU.4. VAR( I I
232 25!) CONTINUE
233
234 MEAN3=(XHIr~ti+XLOW1/2.
235 VAR3=(1./I2.)*RArlGE*42.
236 STO5=SokT(VAR31

j23? UNXZ1./K(
230 00 290 I=1.K(
239 P3tI)=UNI
240 290 CONTINUE
241 CALL ClIEA3.CP3K.,W.slrTH.L3.U3)
242 CALL COFIP3.MEAN3.K(,vi.C3oPX3)

9 243
244 UPRINT INPUT
245
246 VIRJTE(XT,?')51
247 295 FOR'4AT(IH
248 WRITE(1t.30))
249 300 FORMAT(/ I250 WRIT01II.10)
251 310 FORMAT/)
252 wRITEfIY.320)
253 320 F04.AT(////I
254 wRITE 11;3 03 TITLE
255 330 FORMATtIH *5 ,X15A4)

256 wRIJEIII.3201
257 vWRITE 1 11335)258 335 FORM ATflI .55X.11'iI N P U T S)
259 WRITE(II.320)
260 wRITE(I,390) 'M

21 390 F0RMAT(IH .15HO~iSERVATI0NS #151

263 400 FORMATC1H .7'4SEk:D = 5X#181
264- wRITE(I!.310)
265 wRITE(II.3401
266 3'40 FOR'4AT(H .9k49ETA VEILE,7K(,6HL0W.EST6X'.HmOE,5A.7Hl41GEST1.
267 5X.7HU COEF '.5X.5HtvOE,5X5HALPHA6X.4HBETA7X.44?EA,.5X.NVARIA:CE)
268 WRITE(Iio2951
269 IFINI.EO.0) GO TO 351
270 WRITECII,350) (I.L1. I).MODE(I I PHI1) U(I IJMI) Afl) P81 1)MEAN(l).VAR (1).I 11.14
271 350 FOR*AATfIH ,3X.12.8XFQ.1 .IX.FU.1.3X.F9.1,6X.F4.2.7XF4.2.U
272 6X,F5.1.5X.Fli.1,2X(.Fq.1 .lXoF2. 13
273 IF(N2.EO.03 GO TO 352
274 wR]TE(11.30l3
275 351 CONTINUE
276 wRITE(1I.3531
277 353 FORMATfIH .10HOTHCR VRLE)
278 WRITE(It,3543 (I.L(13.NIOOEtI).H(1) ,MEArI(I3.vARt1I.1lNOJE.NTWOI
279 354 FORM'AT(1,I .3E.12.AXF9.1.IX.F9.1.3XoF9.1.Q4IX.F9.1, IK.F12.1)
280 352 CONT1INUE
281 wP!TE(Ire2uOil
282 wRITE(1IT355) TPUTeTPUTPTPUT
283 355. FORAT(IH PIOHT'4ROUGHP'T3X.F9.1,13XF9.1.44X.F9.1)
284 WRITE(1I.300)
285 WRITECI I .3601 XLO,f. XtJI H, SUM. VSUM
286 360 FORMAT(IH .,4 - SI4S..X. F9.1,13X #F9. I s44'X tF9. 1 o3X #F 10. 11
287 lF(N2.EO.0) GO TO 410
28n WRITE111.300)
209 WRITE(III320)

290 URT(I30
291 310 FO0NTI 1HTHRVLE5X31CF
2920 wRlTEIIe3001

296j

P9 S PRINT OUTPU

"aI
299~~ 410 COTIU



302 49O FOR,4AT;&Q 5X11O f P U T'

303 WRITE(1103 0)
303 WRITE(II.3?0)
305 500 FORMAT(II4 *AHINTERVAL@IO0X.5I1RANriEt6X.2?HltflrPENrlENT nETA/OTIICHe3E.'

306 2OHDEPLrIUENT 11E TA/OTHER. 3X 1 3HTOTAL tXl1FOHKe ',X. 19HINt)EPFNDENT UIJIFOKMI
307 WRITE11.505)

309 50 FO11'AT(1.4 *36EX.HIPlW,4Xo3HCOF.12X,3HP1F.'X,3HCDF.1OX.S
310 3HPOF.4X.3HCDF12X.3IPDFLX.3.ICOF).
311 4RITE(11.300)
.312 wRITEIZI.530) (lI~viU) *.lI41).PIlI)oCI (I).P2(l)tC?(1).P3(I).C3(I).Pf4(1)C.E1).I I#Kit)
313 510 FORt4AT(IH .2XI?.4X.F9.1v3H - .Fu.1,5X.F6.411C.F(6.4.9XF6.4.IX.F6.4e7XPS
314. F6.4.2X.F6.4 .PI.F6.4 .2x.F6.4)

* 316 WRITEf11.52fl f4EAN1.EAfI24Cr1oM EA11Ef4
317 5201 FOR'IAT111H* I-..ME*l..27X1,F9. I, IIX.F9OI12XeF.1 *131XF9 * I

*1318 WRITE(11.5301 "OODEI1112.Mor)E4
319 530 FOP)'ATfiH .A-i*.%OO)E...?7X.F7q.1.13XoF9.1,34X.F9I)
320 wRITEX1.5401 VAt.VAi(?pV.AP3rVAR4

*322 %YRITE I I 15451 STDI.S10)2.STD3SD'a
323 545 FORMAT I H *1711**STO OEV1AT1OtisA,17X.F20.1,12X.F20.2.11X.F10.1,12X.FIO.lI

*324 wRITEI[.2-451
325 620 CONTIIJE
326 WRITE(11.5i0 ZC.LI LP.L3,LL1.UJ .0i?.U3.UJ4
327 5r0 FORAAT(IH .2H*-,2v 3$-4 COtl*FID~tJCF 1tTERVAL*..AX.FQ.2,lH..12XF9.1.I..,L
328 11X.F9.1. iH. *2?XFQ.1.IH./36X.F9.1.13X.F9.1.12XF9.1.13X.F9.11
329 IF I7C.*NE.go) GO TO 570
330 IRITE(11.295)
331 WRITECOI!;560) OXI.PX2PX3.PXU
332 560 F R"AT11 .20 *-P l EYCEED MEAr*..22X.F3.2.19XF3.2.18X.F3.2.19X.F3.2)
333 WRITE(It .30 n
334 570 CONTI(IUE
335 WRITEEIT#3101
336 w411E111,606i

33A READ(J.J.*) IC
339 !F(1C.E~.03o GO TO A10
340 CALL C1(%EAN.C.P..W.~jiDrTH.L1,Ul)
341 CALL CI!VEANl2,1C.P2.K...!flTHL2.U2I
342 CALL CIIgMCAI3.rC.P3.K#,.,1.-t1TH.-L3.U31

-;343 CALL C14M~EA4IC.P4.Klt.W..flODTH,L4.U4A)
344 GO TO 620
345 610 CONT1INUE
3'36 WRITEIIT:310)
347 :RITE (11 62P)
348 622 FORMAT(IH o23HPR083 EXCEED SOMEC VALUE?)
349 RCAOtJ.j.#1 2
350 IF(Z.E0.0.1 GO TO 623
351 CALL COF(P.Z.,Q(.WdC1,PXI)
352 CALL COF P2:Z:KK.vC2:PX2)
353 CALL C)F1P3 Z IKK W C3 PX3 )
354 CALL CDF1~P4,Z,KK~.v,C4,PX4)
355 WRITEIII,624) ZPPXIPX2.PX3.PX4
356 62U F08'IAT(ltl -13H*-PROfi EXCEEDO..12N*e17X,F3.2,19X.F3.2.8XF32.19X.F.

2 1
357 60 TO 620t
358 623 CONTINUE~
359 WRITE(1!.3101
360 WRITEIII,630)
361 630 FORV.AT(IH .24HAO( -ITIONAL OBSERVATIONSPI
362 REAO(Jits) MSTAR
363 IF(MSTAR.EQ.0l GO TO 640
36'. M=M4STAR
365 6010O160
366 640 CONTINUE
367 WRIIEEI1#3101
368 WRITEMP16501

369 650 FORM.AIIIG #13HANOTHER SEED?)

370 REAOUJJPOI KS5 I
371 IFKS0.E.).0) STOP
372 1(302:150
373 wRITEC IIt 77v
374 REAOIJJel 04
375 0010O140
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t.l

I SL13ROUTINE CI(WIAN#ICoPvKKvW#WIOTHsLHUeUdO)
2 REAL WC1).MLANP14eLeTIeLPROB5,LBDPLWT2
3 DO 20 I=2.KK

5 WF(W(I).GE.MEAN) GO TO 260
6 250 CONaTINUE
7 26 0 M74=0
8 C014=.5*( IC/1oo.)
9 LWTI=(MEAN-:(J-)/(C-u-)

a10 270 L pROb=L TIP (J-1
11 K~l
12 JF(LPROO.GE.CON) GO TO 290
13 J1:J-1

14 0D 280 1=29JI
15 K=I
16 LPROB=LPROB+P C J-I)
17 IF(LPPOU.GE.CON) GO To 290
18 280 CONTI1NUE
19 COrl=2.sCOtl-LPROB
20 L60='4(1)
21 60 TO 300
22 290 LWT2=(LPROB-CO4)/P(J-K)
23 180 :(J-K)+LWT2.WIUTIh
211 IFCM.E0.l) GO TO 3 0
25 x
26 300 RWT1=1.-LWTI
27 RPR0R*PlJ-I)
28 LL~l
29 IF(RPROB.GE.CON) GO to 320
50 .J2KK-J+2
31 0O 310 1=2oJ2
32 LL=I
33 RPROB=RPROB+P CJ4 1-21
34 lF(RPROB3.GE.CON) 6O TO 320
35 310 CON4TINUE
36 CON=2.* CON-RPRoO
37 UUmCKK~ll
38 9*1:1
39 GO TO 270
la0 320 RwT2=(RPROB-CONl/P(J+LL-2)
'41 UBO=W(J4L1-1 ?-RWT2*WVIDTH
'42 330 RETURN

1 SUBROUTINE COF(PFZ.K~oWtC#PROBX)
2 REAL P(Ii~vWIivC(I,
3 CC19=P(1)
I6 00 10 1=2.Ki.

6 10 C-:;4T1NUE
7 N=KK,1
8 00 20 1=2tN
9 .1:1
10 IF(CVI.GT.Z. GO TO 30

11 20 CONTINUE
12 30 A(-(-)/Wj~.~)
13 PROBX=(1.-4)sPgj-1

14 00 40 X~iuxx
15 PROBX=PRO3X+PC I)
16 '40 CONTINUE

17 RETURN
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SUBLROUT114E D0632(XLoXUPYeALPHAPBETA)
2 DOUBLE PRECISIOI XL#XUPY,AttUC#FCTPALPHA#ECTA
3 FCT(X)=X..ALPHAW(1.-XI**BEIA

A% 5DX*tl XU)
5 B= U- L
6 C=.4986319309247407800*0
7 Y=(.3509305r)O4735O'.3U-2)*(FCT(A+C)4FCT(A-C))

8 C=.4928057b 7126341700*tI
9 Y=Y+(.b1371973654.)2e350-2)*(FCT(A+C)4FCT(A-C))

110 C:.4823811277937532200ti
11 Y=Y+(.12696032bb'.b3103OU-1I.(FCT(A+C)+FCT(A-C)2

* - I12 C=.467453037968coei840O*13
13 Y * 11713693145b>510717O-1)*(FCT(A+C)4FCTCA-C))
14 C= 4816577833026600
15 YY;+(.214'1794911133UOO-)*(FC(AC4FCT(A-C))
16 C=.E42468380686c28'.9 D0aB
17 Y=Y+(.25.9 021;6113:OR-1D)*(FCT(A+C+FCT(A-C)I
18 C=.3972418979a8397120oOb
19 Y=Y4(.293420O.6739267774r-1)*(FCTCA4C)+FCT(A-C)!
20 C= 36CO9109370148400O ks
21 y Y(.32911 11:38d1'tO923L-).(FCTCA+C),FCTCA-CiI
22 C=.33152213346'j1O76000*8
23 Y:Y,(.3'617289705u.2'.2b3tD-)IFCTCA+Ct4FCT(A-C))
24 C=.2935787862311tOo

*25 Y=Y+(.39994789353t,13-1)*IFCT(A+Ci+FCTtA-C))
26 C=.253449 -544.6t114/OOO*8
27 Y=Y*c.k:1659,62113.73378-)*(FCTCA.C)+FCT(A-C)I

29 Y=Y,(.'.3b260&&bb220190.60-1J.(FC7(A+C)+FCT(A-C)I
30 C=.165934.3O114106382DO*B
31 Y=Y4(.45 8693924784I19L.20-1Is(FCT(A*CI4FCT(A-CJJ
32 C=.119643(,811260685400*8
33 Y=Y4l.L'692219'.5.4C2283D_ 1)*(FCT(A+C)+FCT(A-Cfl
34 C=.72i3598C79139825D-1k3
35 Y=Y+(.a7819360.'396374630D- 1)*(FCTCA+C)+FCT(A-C):
36 C=.241538328438691580-1*8
37 Y=B*(Y+(.aa827OC442573639000-1J*(FCT(A+C)+FCTIA-C)))
38 RETURN
39 END

S SI.AROUTINE STAT (SUMP MeKKo Pt eSUIMSQP MEAN.MODEP VARo STU)
2 REAL MEANMODEPI)W(Ul
3 VMEANZSIJM
'a MOOE=0.
5 DO 10 Z:1KK

- 16 IF(P (,).GT.MODE) MODE=P(I)
7 IFIP(II.Eg.MODE) IMOUEM!
8 10 CCNTINUE
9 MOE=.5*(w(1MODE)tW(IMODE+1))

10 VAR= (SU% S-M*?PEAN**2. )/(M-1)
11 SID=SGRT(VAR)
12 RETURN
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K' 0 0
Optimal Sample Size

In most sampling procedures the larger the sample the

closer the sample distribution approximates the true dis-
tribution. But larger samples are more expensive to gen-
erate than smaller ones. The simple experiments described
below represent an attempt to determine an optimal sample
size for Program SPET -- the smallest sample size that
will ensure "reasonable" accuracy in the sampling proce-
dure.

A statistic called the K statistic in this study is
used in the search for the optimal sample size. It is de-
fined as

N
K =E (oi - ei)2

i=l 1

where N = the number of class intervals

oi = the number of observations occurring in the
ith interval M.

M = -he tctl .mhcr of observatn---

ei = the number of observations expected in the
ith interval (given that the process gener-
ating the observations is following a par-
ticular statistical distribution) M.

The K statistic is the sum of squared deviations of the
observed probabilities from the expected probabilities of
each class interval. As the size of a randomly drawn sam-
ple is increased, the K statistic decreases in value until
limK =0.

M

The first experiment consists of using five randomly
selected seeds with the uniform random number generator
used by Program SPET to generate five sequences of K sta-
tistics. Each sequence contains a K statistic for sample
sizes 500, 1000, 2000, ..., 10000. These K statistics are
plotted in Figure C-1 on page C-16. Note how the se-
quences converge at sample size 6000. It appears that
this might be the optimal sample size. Can one expect a
sample size of 6000 to ensure "reasonable" accuracy in the
sampling procedure?

C-15
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The accuracy of the Monte Carlo sampling procedure

used in Program SPET, for purposes of this inquiry, is
measured in terms of the percent deviation of certain sta-
tistics from their true values. The second experiment is

:: an attempt to measure the accuracy of Program SPET for
various sample sizes. It consists of using the same five
seeds selected in the first experiment to draw five se-
quences of samples from a uniform distribution. Each se-
quence contains samples of size 500, 1000, 2000, 3000,
6000, and 9000. The mean and the lower and upper confi-
dence limits of the 90% confidence interval are noted from
the output of Program SPET and the percent deviation of
these statistics from their population values is computed.
Then the maximum of the absolute value of the deviations
is selected for each statistic in every sample size and
plotted in Figure C-2 on page C-18. Note that the rate of
decrease in the error (maximum percent deviation) of these
statistics is rapid in the range of the sample sizes 500
to 2000, slowing somewhat after sample size 2000.

Consider the error in sample size 2000. Would theexpectation of a deviation of at most .21 percent in the

mean and 2.44 and 1.81 percent in the lower and upper lim-
its of the confidence interval respectively, be "reason-
able?" The authors would answer affirmatively. Reason-
ableness is subjective. It is felt that the accuracy of
sample size 6000 is not enough better than that of sample
size 2000 to warrant incurring the increased cost of gen-
erating an additional 4000 observations.

Much greater confidence could be placed in these ten-
tative observations if, instead of five sequences, 30, 40
or more sequences had been generated.- But even the re-
sults of the five sequences permit a more confident choi.:e
of sample size than no experimentation at all.

1 .i

* 4/ Atong with a g'eate& nambex o Aequenee6 one might
have tepeated expeximent two uaing one ox two aep/e-
Aentat ue beta dist.buton4 in addition to the uni-
loam di:t~ibution u.ed above.
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